If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2=18
We move all terms to the left:
10y^2-(18)=0
a = 10; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·10·(-18)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*10}=\frac{0-12\sqrt{5}}{20} =-\frac{12\sqrt{5}}{20} =-\frac{3\sqrt{5}}{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*10}=\frac{0+12\sqrt{5}}{20} =\frac{12\sqrt{5}}{20} =\frac{3\sqrt{5}}{5} $
| ^2x-5=220 | | 2(x-6)-6(x-2)=x+8-(x-4) | | -4x2+2x-1=0 | | (3/4x-2)+(2/5x)+90=180 | | 6r+3=9 | | -(15/8)=3y | | x^-7=0 | | -7x/8=-49 | | (3/4x-2)+(2/5-x)=90 | | 1.3x2=7.9 | | 10x^=100 | | 5y-5=19y+15 | | .50x+20(9.0-x)=315 | | 4y/13-30/91=y/7 | | 15x2+45x=0 | | 2(a+7)-7=9 | | X+0.08x=110.16 | | (2/5x+90)+(3x-2)=180 | | 11x2-121x=0 | | 8x–3=x+17 | | 6x-9=5x+25 | | 3=c+7-17 | | (3x)^2+19x+16=0 | | (x+1)2=(x+2)2-2(x+1) | | 4x^-200=52 | | 4x-2(x+3=5(x-3) | | 1/2(-6k+20)=6+13k | | (4x)^2-36=0 | | (x+5/2)=15 | | 6y=9/33 | | 24-15x=9 | | 7x^-200=52 |